
Using Stream Features for Instant Document Filtering

Andreas Bauer
Media Informatics Group
University of Regensburg
Regensburg, Germany
andreas.bauer@extern.ur.de

Christian Wolff
Media Informatics Group
University of Regensburg
Regensburg, Germany

christian.wolff@ur.de

Abstract
In this paper, we discuss how event processing technolo-
gies can be employed for real-time text stream processing
and information filtering in the context of the TREC 2012
microblog task. After introducing basic characteristics of
stream and event processing, the technical architecture of our
text stream analysis engine is presented. Employing well-
known term weighting schemes from document-centric text
retrieval for temporally dynamic text streams is discussed
next, giving details of the ESPER Event Processing Agents
(EPAs) we have implemented for this task. Finally, we de-
scribe our experimental setup, give details on the TREC mi-
croblog runs as well as the result thereafter with our system
including some extensions and give a short interpretation of
the evaluation results.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search pro-
cess

General Terms
Experimentation

Keywords
information filtering, event processing, web2.0, text streams,
real-time search, tf/idf, okapi, stream features

1. INTRODUCTION
Due to the rapid growth in user-generated digital content,

data stream processing has received increasing scholarly at-
tention. Most of this content is textual, thus investigating
how to effectively rank real-time text streams is an interest-
ing research question.

In this paper we present an event-based approach to real-
time information filtering as well as our results created for
the microblog real-time filtering task for TREC 2012. In ad-
dition, we discuss improved results, which we have achieved

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
.

after the TREC 2012 microblog task deadline. We also show
how to leverage (complex) event processing engines for con-
tinuous term weighting and feature generation.

2. EVENT-BASED INFORMATION FIL-
TERING

The basic idea of splitting and mapping text streams onto
semantically distinct event types has already been presented
in [1]. In short, the approach here is to feed an incoming
tweet into a network of event processing agents that imme-
diately execute the analysis and provide an instant ranking
of the tweet. This is possible because modern event process-
ing engines like Esper1, Tibco BusinessEvents2 or Drools
Fusion3 support high-speed processing of events.

More recently a streaming version for the big data frame-
work Hadoop has been released4 and Twitter has published
its real-time streaming system Storm5. In addition, the S4
distributes streaming platform, originally published by Ya-
hoo, is now an incubator project supported by the Apache
Foundation as well.6. All these developments show that
event processing is still needed and is consider as a viable and
elementary part of the efficient processing of large amounts
of data. Big Data and event processing are no mutually ex-
clusive concepts but rather complementary, where event pro-
cessing addresses interesting goals in analysing large amount
of data by offering features like sliding windows or pattern
matching.

It is quite obvious that streaming and event processing
offer major opportunities for analysing text streams in real-
time and that the industry is not only focusing on increasing
the speed of analysing large amount of data. While the event
processing paradigm as proposed by David Luckham[9] orig-
inally focussed on business applications, the applicability for
information retrieval tasks has been recognized in more re-
cent work[3, p.10][10, p. 42]. We have used Esper as our
event processing engine of choice, because it is open source,
offers good online support and allows for a straightforward

1http://www.espertech.com
2http://www.tibco.com/products/event-processing/
complex-event-processing/businessevents/default.
jsp
3https://www.jboss.org/drools/drools-fusion.html
4http://hadoop.apache.org/docs/r0.15.2/streaming.
html
5http://engineering.twitter.com/2011/08/storm-is-
coming-more-details-and-plans.html
6http://incubator.apache.org/s4/

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
NOV 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Using Stream Features for Instant Document Filtering

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Regensburg,Media Informatics Group,Regensburg,
Germany,

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the Twenty-First Text REtrieval Conference (TREC 2012) held in Gaithersburg, Maryland,
November 6-9, 2012. The conference was co-sponsored by the National Institute of Standards and
Technology (NIST) the Defense Advanced Research Projects Agency (DARPA) and the Advanced
Research and Development Activity (ARDA). U.S. Government or Federal Rights License

14. ABSTRACT
In this paper, we discuss how event processing technolo- gies can be employed for real-time text stream
processing and information ltering in the context of the TREC 2012 microblog task. After introducing
basic characteristics of stream and event processing, the technical architecture of our text stream analysis
engine is presented. Employing well- known term weighting schemes from document-centric text retrieval
for temporally dynamic text streams is discussed next, giving details of the ESPER Event Processing
Agents (EPAs) we have implemented for this task. Finally, we de- scribe our experimental setup, give
details on the TREC mi- croblog runs as well as the result thereafter with our system including some
extensions and give a short interpretation of the evaluation results.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

integration of high volume text stream analysis. Some of
the advantages of an event processing approach are:

1. Clear semantics: Due to the real-time scenario each
digital utterance has to be considered in its temporal
context. The sheer amount of information constantly
generated raises the probability of an information be-
ing lost, overlooked or ignored increases as time passes
by. The event metaphor is well suited for this type of
informational scenario because it stresses the temporal
aspect.

2. Interoperability : From a design point of view the map-
ping of text onto event types allows for easy combina-
tion of events from different sources. E.g. if Facebook
status updates and Tweets are mapped onto the same
basic event type like Token Event, Location Event, or
Sentiment Event, cross data stream analysis can eas-
ily be performed, because the same event processing
agents (EPAs) as well as the same event processing
network (EPN) can be used.

3. Technical integration: Many current big data or large-
scale analysis systems rely on exploiting the tempo-
ral nature of information. Thus, they are designed to
work with events that can be analysed in a temporal
manner by providing temporal meta-information, e.g.
detection time, creation time or expiry time.

3. TECHNICAL ARCHITECTURE
Figure 1 shows the overall technical architecture of the

system we have used for our experiments. Mircoblogs are

Figure 1: Architecture Overview

imported via a JSON interface and fed into the text prepro-
cessing component. which includes the following steps:

1. Conversion to lower case

2. Stemming with the Porter stemmer

3. Stop word removal7.

7Stop word list used: ftp://ftp.cs.cornell.edu/pub/
smart/english.stop

4. Enriching basic tweet events with statistics on up-
per/lower case characters, character count and stop
word count.

5. Language detection

After the conversion of raw Tweets into TweetEvents,
the latter are fed into the event processing network using
the ESPER event processing engine. First, each tweet is
sent to an event processing agent that splits up the text of
the tweet and maps it onto semantically distinct event types.
Then these events are processed by several other Event Pro-
cessing Agents, that calculate stream statistics like average
text length, count of distinct tokens, term counts, etc.

Important to notice are the SearchProfileEPAs that
were created for every TREC topic. Within these EPAs
the filtering was done which was based on different ranking
schemes. Important to fulfil the real-time requirement the
amount of Tweets that should be examined was decrease
by a first filtering step that prevent many Tweets from en-
tering the real filtering stage. This first filtering step has
major influence on the recall of the system, because it acts
as a gatekeeper to the filtering processes. Hence a strict
filter condition increases precision, but lowers recall for in-
stance. For the runs we present in this paper the primary
filtering rule is shown in condition 1

Filter = {x|qm ≥ 1 ∨ stl = 1 ∨ (qm > 0 ∧ fm > 1)} (1)

With qm being a term match of a topic term and a term
in the Tweet, stl being a search profile with only one search
term and fm being a feedback match, i.e. a feedback term
was encountered in an incoming Tweet.

4. USING STREAM FEATURES FOR
RANKING

The stream features that were described in the previous
section are now processed using different ranking algorithms.
For the TREC 2012 runs, we were only able to provide two
algorithms, one based on OkapiBM25 and the other a stan-
dard Vector Space Model-based approach. For each schema
we have provided one run with and without relevance feed-
back. In later publications we will present the application of
stream based features using BursT, TF/ICF and incremen-
tal TF/IDF. Furthermore we will present the results of plug-
ging stream based TF/IDF values into weighting schemes
like ATC and LTU [5, p. 4]. Here, we would like to find
out whether stream based features calculated by applying
sliding time windows onto the data streams offer reasonable
results.

This is relevant because this approach emphasizes the
temporal sensitivity of events, i.e. a streamed approach re-
flects better the continuous nature of a text stream.

4.1 Components of a Document Ranking
Scheme

[16, p. 517f] state that there are three relevant compo-
nents within a term weighting scheme: Term frequency de-
scribes what a document is about. The second component
is a factor that reflects the distribution of terms in the doc-
ument collection as a whole while the third factor takes into
account the length of a document in order to avoid over-

or under representing terms in the weighting scheme (docu-
ment length normalization). All of these components were
taken into account and adjusted for the real-time filtering
scenario. In the following subsections we discuss how con-
cepts like term, document, document collection and rela-
tionships have to be adjusted for the microblog scenario and
its streaming and real-time aspects.

4.1.1 Determining term frequency in text streams
[12, p. 2] have showed that 85% of all Tweets contain

terms only once. Hence the traditional term frequency mea-
sures that rely on the term count within a document fail,
because for almost every token within a tweet the tf value
would be the same. To overcome this problem we have used
stream statistics in order to derive a term frequency replace-
ment value that reflects the importance of a term. As men-
tioned above we use sliding time windows: With these win-
dows we build a windows into the past that reflect the last
k seconds, minutes or events of the data stream. We think
that this approach reflects best the temporal notion of in-
formation streams.

For the runs we submitted to TREC 2011 we have used
a sliding time window of 120 seconds to calculate ad-hoc
statistics for each event stream. Assuming we could use
approx. 4.5 out of 12 million downloaded Tweets distributed
equally over 16 days, we get an average event frequency of
approx. 300k events per day. Assuming a constant event
arrival rate, this means that only 4 events arrive per second.

In the set-up for the TREC runs we have set the event ar-
rival rate to 500 events per second, because otherwise a run
would have taken understandably 16 days, if we had kept
the original arrival gaps. Extrapolating the time window of
120 seconds, which we used for the TREC runs, this cor-
responds to a real world window of approx. 4 hours. This
value was chosen arbitrarily and will be subject of further
investigations. In general, we can assume that the smaller a
time window is the better it reflects the most recent changes.

For the post-TREC runs – runs we created after the dead-
line of TREC – we changed the values to 1200 events per
second. The best results, which will be presented in the
last section5.1.1, were yielded with a time window of 240
seconds. If we extrapolate this to real time this would cor-
respond to a sliding time window of almost one day.

We use the sliding time windows to build dynamic statis-
tics for different events type of the stream: We have built
the top-k window for hashtags and tokens event stream. For
the presented runs we only used hashtags and tokens for cal-
culating a local term weighting factor, because hashtags are
“”derived“” from regular tokens and hence can be used for
the boolean matching step that is conducted in order to de-
termine the terms that should be weighted.

There are more special semantics to Twitter like
retweets(rtusername), mentions (@username) and or em-
bedded links, that could be used for filtering the stream, but
this is still subject to further investigation.

Listing 18 shows how to construct the top-k ranking for
retweets. Each insert into statement can be considered as
a separate EPA. Esper offers the possibility to subscribe to
such statements and then Java code can be executed on the
events that are being processed by the EPA.

81 shows how the top-k retweets are generated.

Stream Weight
Token Stream 1.0

Hashtag Stream 1.5
Table 1: Stream weights for TREC 2012 runs

Listing 1: Building an EPA in Esper
create window
rtcount

. win : time (const s tat s window sec)

. s td : unique (token)
as (token St r ing

, cnt Long
, type St r ing
, t s Long) ;

insert into rtcount raw
select

i s t ream token
,count (∗) as cnt
, ’ RtCount ’ as type
, current timestamp () as t s

from RetweetEvent
. win : time (

const s tat s window sec
)

group by token
having count (∗) > 0
output every var output sec ;

insert into r tcount
select i s t ream token
, cnt , ’ RtCount ’ as type
, current timestamp () as t s
from rtcount raw s
where cnt > 0 ;

insert into topKrt
select token , cnt
from r tcount
output every var output sec
order by cnt desc limit top k ;

For the TREC runs the term frequency tf is then being
calculated using the following formula:

tfw,t = 1 +

n∑
i=1

(
TWi,t ∗

1

log2(rankt +K)

)
(2)

with TWi,t being an event stream specific weighting value.
For the runs we use the values shown in table 1. The val-

ues are heuristically chosen, based on observations of Twit-
ter, e.g. [19] or [2].

Discussion on real time filtering corpora.
We want to mention that we compressed the text stream

for our runs from a real world 16 day period to a contin-
uous, one hour data stream, because there is no separate
high-volume microblog corpus available for the TREC 2012
filtering task.

This might cause discussion on how representative the re-
sults are in comparison to the real world Twitter stream,
because in our scenario real world events of 16 days are sim-
ulated to happen within one hour. Hence the real Twitter

stream might offer a different density and distribution of
terms than the TREC corpus. This will be subject to fur-
ther research and discussion, but we think that our approach
is valid, because experiments with smaller time windows in
the post-TREC runs showed also comparable results. Due
to space limitation we will postpone this discussion to a later
paper.

4.1.2 Determining document collection features in
text streams

For determining the document collection based features
we employ sliding time windows as well. Sliding time win-
dows were also used for the BursT weighting scheme[7],
which underpins the viability of our approach. Again, we
use the time window to calculate a streamed inverse docu-
ment frequency(sIDF) value that will be use as the docu-
ment collection value. The formula is the same as proposed
in [6] and explained in [14, p. 504], but it is based on the
document count N and term count n in the sliding time
window w :

sIDFw,t = log2

Nw

nw
(3)

The final score is then simply calculated by plugging the
features into the chosen ranking method. For the TREC
runs we used a Vector Space Model and OkapiBM25. For
the post-TREC runs we modified OkapiBM25 slightly as
well as we used the ATC method[5].

4.2 Pseudo Relevance Feedback for Query
Expansion and External Evidence

For the TREC runs no external evidence was used, i.e.
no data from Wikipedia or from a search engines were used
nor URLs contained in a Tweet were resolved in order to
adjust the search profiles. A search profile had the following
structure shown in listing 2 and Tweets were only allowed to
be considered if they had a tweet id between querytweetime
and querynewesttweet.

Listing 2: Sample search profile TREC filtering trec
<top>
<num> MB049 </num>
< t i t l e> carbon monoxide law </ t i t l e>
<querytime>

Tue Feb 01 22 : 4 4 : 2 3 +0000 2011
</ querytime>
<querytweett ime>

32005451423948800
</ querytweett ime>
<querynewesttweet>

32569981321347074
</ querynewesttweet>

</ top>

It has been shown ([11], [8]) that expanding a URL con-
tained in a Tweet can improve the retrieval and ranking
performance of algorithms. This approach was not applied
here, as the delay between arrival and judgement of a tweet
should be kept as small as possible. Hence the resolution of
a URL, its parsing and analysis would have introduced an
additional time gap that was not acceptable. In an end-user
scenario where a real user does not require immediate esti-
mation of new Tweets, this constraint may be loosened and

external evidence from a given url might be included. As
mentioned above, in this experiment we focus on the imme-
diately available textual information only.

In two TREC-runs pseudo-relevance feedback was in-
cluded as follows: The system starts without any additional
query terms. While the system is running, new Tweets ar-
rive. If the arriving Tweet is considered as being relevant
according to the judgements provided by the TREC board,
the terms of this Tweet are incorporated into the search pro-
file . The top 5 tokens are added dynamically to the search
profile.

But this approach had the drawback that search profiles
got dominated by general terms9 that diluted the search pro-
file. But despite of this one Okapi run submitted to TREC
was ranked as #13 out of 69 submitted runs[18].

The relevance feedback mechanism was improved for
the post-TREC runs. The positive and negative feedback
Tweets were saved in the search profile. During the filtering
phase the relevance feedback terms were queried in that way
the all - no ranking or selection process - negative feedback
terms were subtracted from the positive ones. Only these
terms – weighted by factor

α

– were used in addition to the original query terms. This
substraction method was the reason for the remarkable in-
crease of the system. In further research we will try to de-
scribe in detail why this worked and if it only worked by
chance for this scenario.

Without the new feedback method the result stayed
around a T11SU around .33, but with the it went up to .47.
We also tried a Rocchio based feedback and incorporated de-
cay factor to re-weight the terms in the feedback set. Both
did not yield results comparable to the subtraction method.
The result stayed around a T11SU value of .33.

4.3 Relevance Decision
The relevance decision and thus the setting of the decision

threshold are the two main aspects that sustainably influ-
ence the performance of an information filtering system.

The relevance decision for the TREC run was as follows.
The guidelines of the microblog filtering task asked to pro-
vide a retrieval decision for every retrieved Tweet. To do
so we simply built an ideal document by adding missing
search terms to the Tweet under inspection and calculated
the score for this Tweet. So we had two scores that could
be use to generate a ratio. For the TREC runs we used 0.5
as the threshold, i.e. every Tweet scoring more than 0.5 was
marked as relevant.

For the POST TREC runs we used a different approach.
Here we exploited a further stream characteristic . We cal-
culated the average score of the positive marked Tweets in
the sliding time window. If an incoming Tweet exceeded the
average of the positive feedback samples than it was marked
relevant. This approach increased all performance measures
verifiably.

In order to verify this we did a post-hoc evaluation of our
runs and determined the best T11SU value by increasing the
threshold step by step. This retrospective approach yielded
a fixed threshold and for e.g. ReverseOkapi the best T11SU
value was at around .46. While precision was almost equal

9In [? , p. 8] general terms are defined as occurring in
positive as well as in negative documents

the dynamic average approach yielded by far better recall
values. This is obvious as a dynamic threshold always reflect
the current situation of the stream and hence adapts well to
changing situations.

5. RUN RESULTS
In this section we present the results for the TREC

2012 and the post-TREC runs. Furthermore we provide
a comparison to an incrementalcorpus approach based on
Lucene10, i.e. the arriving Tweets were constantly added to
the Lucene index and score with the custom Lucene scoring
as well as with an custom OkapiBM25 implementation.

5.1 Experimental Setup and Data
The data for the experiments is the TREC 2011 microblog

corpus11. It is one of the last microblog corpora that is still
freely available. Due to its copyright rules Twitter does
not allow third parties to provide closed sets of Tweets for
research or similar purposes. For example, the Edinburgh
Twitter Corpus [13] was a scientifically edited corpus but is
not available any more due to the aforementioned restric-
tions.

The TREC 2011 corpus is not a Twitter corpus available
for free download either. TREC only offers the id of Tweets
that are used for the TREC conference. The Tweets can
be downloaded with a tool that crawls either the HTML
page of the Tweet with the given ID or downloads a JSON
version of the corresponding Tweet. The latter makes use
of Twitter API calls which are usually very restricted (e.g.
150 per hour) which dramatically slows down the download
process. We have used the HTML version as this allowed us
to download the data in a reasonable amount of time.

In total, there are 16 million Tweet ids available. But
Twitter is constantly moving its data and that is why it
is not assured that each Tweet ID provided by TREC can
be downloaded, what in turn has the effect that every re-
search group obtains a different corpus depending on the
time Twitter was crawled. We have downloaded the data
from Twitter in a time period from October 10 to 19, 2011.

In total we were able to download approx. 12 million
Tweets. For our runs, only English Tweets were considered.
For this purpose we used the language detection library de-
veloped by [17].

We also removed Tweets containing more than four ques-
tion marks (’???’) because there were many Tweets that
contained only question marks because of their encoding12.
Out of the approx. 16 million available ids that were pro-
vided by the TREC board we could use approx. 4.5 million.
The proceedings of the TREC conference13 show that this
is average of Tweets that could be effectively used.

5.1.1 Evaluation
In total, we have submitted four runs to TREC 2012:

Two runs based on OkapiBM25 and two using a Vector
Space Model approach, each with and without relevance

10https://lucene.apache.org/core/
11Access for academic purposes can be requested here http:
//trec.nist.gov/data/Tweets/

12Foremost Asian languages were not correctly retrieved by
the Crawler

13The TREC proceedings will be probably available in the
first quarter 2013 http://trec.nist.gov/proceedings/
proceedings.html

feedback. After the TREC deadline we continued experi-
menting. These results are also shown here. We compare our
results with the best run from the TREC microblog filtering
track in terms of T11SU, f-measure, precision and recall.
The runs presented in this section were evaluated against
the relevance assessment provided by the TREC board14.
The qrel15 value 2 was mapped onto value 1 to get to the
binary case. In total 60129 Tweets had been assessed, out of
which 116 were considered very bad (-2), 57048 not relevant
(0), 2404 relevant (1) and 561 highly relevant(2).

The used evaluation measure are described in [15]. All
results are sorted by their T11SU value, which is a utility
oriented evaluation measure[4, p. 3] and which is the stan-
dard evaluation measure in the filtering tasks of TREC.

Only after submitting the runs to TREC, we have found
out that the Vector Space Model (VSM) results got cor-
rupted which became apparent due to their poor perfor-
mance. The reasons for this are under investigation. The
okapiv1 and okapiv2rel performed quite well, while okapiv1
being our best run. This run made it to number 13 out of
69 submitted runs.

In the TREC runs the ones without relevance feedback
did better than the ones with relevance feedback. This is
due to the naive feedback approach used for the TREC runs
4.2, which diluted the search profile. So the search profiles
without feedback stayed more concise and hence performed
better.

The naive feedback approach was changed for the post-
TREC runs (reverse okapi,atc 2) and this improved the re-
sult significantly. Besides changing the feedback mechanism
we experimented with different window sizes. Increasing the
time window from 10 to 120 seconds also showed better per-
formance16.

Furthermore the weight for hashtags while determining
the local term weight was increased from 1.5 to 12. The
ratio between tokens and hashtags is quite skewed, so the
hashtag weight would not contribute significantly if we kept
the weight so low.

The aforementioned adjustment of the feedback mecha-
nism and the dynamic threshold helped to increase the pre-
cision of the post TREC runs. Also the experimentation
with different ranking schemes showed interesting result.
We tried two versions of Okapi: one with regular docu-
ment length normalization17 and one with reverse normal-
ization18. The goal of the latter was to improve the ranking
for longer Tweets. This yielded remarkably better result
than regular Okapi. Furthermore we tried a classic Vector
Space Model approach, as well as an approach (RSV) only
based on the document collection features, i.e. only the
idf values. Finally in order to show the effectiveness of the
event based approach we did some comparison runs based
on Lucene. We used Lucene for indexing and retrieving in-
cremental term statistics (document and token count) and
calculated a cosine similarity measure as well as a custom

14http://trec.nist.gov/data/microblog/11/
microblog11-qrels access restricted; registration re-
quired

15Relevance assessment value provided by the TREC board
16Due to space reasons we only show the values for the ad-
justed relevance feedback and changed window size

17norm = doclength
averagedoclength

18norm = averagedoclength
doclength

OkapiBM25 one. Both performed considerably worse than
the event based approach using sliding windows.

Table 3 shows the concrete numbers of for the experi-
ments conducted after the TREC submission deadline. Ta-
ble 4 shows the runs without using the subtraction based
relevance feedback mechanism.

6. CONCLUSION AND OUTLOOK
Few results submitted to TREC come close to the best

value for a specific task, but many of the results are above
the median. For the the post-TREC runs the performance
was increased. This was foremost due to the adjustment
of the window size and the improvement of the relevance
feedback mechanism. Both results can be interpreted as a
confirmation of the viability of the general approach employ-
ing an event processing engine for microblog stream process-
ing. Besides error correction we will focus on the analysis
of additional measures of comparison. We will also com-
pare different strategies of construction the temporal cor-
pus, where we will investigate a dynamic adjustment of the
window size depending on evaluation metrics like precision,
recall or f-measure. Additionally we want investigate how
to incorporate the context of the search terms in order to
improve the retrieval quality and increase recall. Finally we
will contrast sliding windows with incremental approaches
and investigate how to efficiently set the decision threshold
in order to maximize the performance of the system.

References
[1] Andreas Bauer and Christian Wolff. Event based classi-

fication of Web 2.0 text streams. arXiv.org, cs.IR, April
2012.

[2] Miles Efron. Hashtag retrieval in a microblogging en-
vironment. In SIGIR ’10: Proceedings of the 33rd in-
ternational ACM SIGIR conference on Research and
development in information retrieval. ACM, July 2010.

[3] Opher Etzion and Peter Niblett. Event Processing in
Action. Manning, 2011.

[4] D A Hull and S Robertson. The TREC-8 filtering track
final report. 1999.

[5] R Jin, C Falusos, and A G Hauptmann. Meta-scoring:
automatically evaluating term weighting schemes in IR
without precision-recall. Proceedings of the 24th an-
nual international ACM SIGIR conference on Research
and development in information retrieval, pages 83–89,
2001.

[6] K S Jones. A statistical interpretation of term speci-
ficity and its application in retrieval. Journal of Docu-
mentation, 60(5):493–502, 2004.

[7] C.H. Lee, C.H. Wu, and T.F. Chien. BursT: A Dynamic
Term Weighting Scheme for Mining Microblogging Mes-
sages. Advances in Neural Networks–ISNN 2011, pages
548–557, 2011.

[8] Feng Liang, Runwei Qiang, and Jianwu Yang. Ex-
ploiting real-time information retrieval in the microbl-
ogosphere. In JCDL ’12: Proceedings of the 12th
ACM/IEEE-CS joint conference on Digital Libraries.
ACM Request Permissions, June 2012.

[9] David Luckham. The Power of Events. Addison-
Wesley, 2005.

[10] K. Mani Chandy and Roy Schulte. Event Processing.
Designing IT Systems for Agile Companies. McGraw
Hill, 2010.

[11] K Massoudi, M Tsagkias, M de Rijke, and
W Weerkamp. Incorporating query expansion and qual-
ity indicators in searching microblog posts. Advances in
Information Retrieval, pages 362–367, 2011.

[12] N. Naveed, T. Gottron, J. Kunegis, and A.C. Alhadi.
Bad News Travel Fast: A Content-based Analysis of
Interestingness on Twitter. websci11.org, 2011.

[13] Saša Petrović, Miles Osborne, and Victor Lavrenko.
The Edinburgh Twitter corpus. In WSA ’10: Proceed-
ings of the NAACL HLT 2010 Workshop on Computa-
tional Linguistics in a World of Social Media. Associa-
tion for Computational Linguistics, June 2010.

[14] S Robertson. Understanding inverse document fre-
quency: on theoretical arguments for IDF. Journal of
Documentation, 60(5):503–520, 2004.

[15] S Robertson and I Soboroff. The TREC 2002 filtering
track report. 2002.

[16] G Salton and C Buckley. Term-weighting approaches
in automatic text retrieval. Information Processing &
Management, 24(5):513–523, 1988.

[17] Nakatani Shuyo. Language detection library for java,
2010. URL http://code.google.com/p/language-

detection/.

[18] I Soboroff, I Ounis, and Jimmy Lin. Overview of the
TREC-2012 Microblog Track. In trec.nist.gov. NIST.

[19] Michael J Welch, Uri Schonfeld, Dan He, and Junghoo
Cho. Topical semantics of twitter links. In WSDM ’11:
Proceedings of the fourth ACM international conference
on Web search and data mining. ACM Request Permis-
sions, February 2011.

Run id Precision Recall F-Measure@.5 T11SU Decision Threshold
okapiv1 (TREC) 0.3370 0.1024 0.3338 0.1916 0.5

okapiv2rel (TREC) 0.2831 0.1486 0.2978 0.1942 0.5
vsmv1 (TREC) 0.1217 0.0732 0.2690 0.0616 0.5

vmsv2rel (TREC) 0.1411 0.0518 0.381 0.0835 0.5
Table 2: TREC run summary

scoring function prec recall f measure t11su accuracy specificity tp tn fp fn
1 VSM 0.4074 0.4221 0.3783 0.3391 0.8945 0.9089 771 30191 3026 625
2 tfidf 0.6199 0.2115 0.3737 0.4155 0.9275 0.9541 404 15165 729 488
3 RSV 0.6060 0.3348 0.4764 0.4477 0.9559 0.9786 568 32418 710 813
4 reverse okapi 0.7198 0.3482 0.5518 0.5148 0.9677 0.9904 594 32916 318 802
5 okapi stream count 0.5977 0.3437 0.4775 0.4504 0.9557 0.9783 583 32515 720 813
6 atc 0.4861 0.3438 0.4188 0.3898 0.9470 0.9641 675 31908 1189 634
7 lucene tfidf incr 0.3514 0.1364 0.2207 0.3027 0.8761 0.9053 307 14392 1506 573
8 lucene okapi 0.3288 0.1953 0.2274 0.2824 0.6833 0.6941 430 11035 4863 450

Table 3: Post TReC runs using relevance feedback – summary

scoring function prec recall f measure t11su accuracy specificity sum(tp) sum(tn) sum(fp) sum(fn)
1 atc 0.2725 0.1819 0.2015 0.2727 0.5122 1 448 2082 1968 441
3 okapi stream count 0.2726 0.3282 0.2413 0.2469 0.7055 1 821 9114 3658 489
4 reverse okapi 0.3026 0.3483 0.2711 0.2681 0.7595 1 801 9893 2878 509
5 RSV 0.3497 0.1717 0.2465 0.3051 0.7143 1 444 3084 966 445
6 tfidf 0.3227 0.1890 0.2295 0.2780 0.5868 1 518 2380 1670 371
7 VSM 0.3150 0.1667 0.2026 0.2719 0.5386 1 407 2253 1797 482

Table 4: Post TReC runs without relevance feedback – summary

	Introduction
	Event-based Information Filtering
	Technical Architecture
	Using Stream Features for Ranking
	Components of a Document Ranking Scheme
	Determining term frequency in text streams
	Determining document collection features in text streams

	Pseudo Relevance Feedback for Query Expansion and External Evidence
	Relevance Decision

	Run Results
	Experimental Setup and Data
	Evaluation

	Conclusion and Outlook

